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Solitonic energy transfer in a coupled exciton-vibron system

Dirk Hennig
Freie Universität Berlin, Fachbereich Physik, Institut fu¨r Theoretische Physik, Arnimallee 14, 14195 Berlin, Germany

~Received 19 October 1999!

We consider the exciton transfer along a one-dimensional molecular chain. The exciton motion is influenced
by longitudinal vibrations evolving in a Toda lattice potential. It is shown how the soliton solutions of the
vibron system coupled to the exciton system induce solitonic exciton transfer. To this aim the existence of a
regime of suppressed energy exchange between the coupled excitonic and vibrational degrees of freedom is
established in the case of which a nonlinear Schro¨dinger equation for the exciton variable is derived. The
nonlinear Schro¨dinger equation possesses soliton solutions corresponding to coherent transfer of the localized
exciton.

PACS number~s!: 41.20.Jb, 42.65.Pc, 63.20.Pw, 71.10.2w
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I. INTRODUCTION

As is well known the interplay of dispersion and nonli
earity in nonlinear evolution equations may result in loc
ized solutions@1,2#. Solitons are an important prototype o
such localized solutions allowing stable storage and cohe
transport of a physical quantity. The soliton concept w
successfully applied in various physical contexts includ
nonlinear optics, condensed matter physics, and hydro
namics @3#. Soliton solutions are regarded to play also
important role in modeling the efficient and loss-free trans
of energy and quasiparticles in biomolecular aggrega
@4–9#. Basic to many models of biomolecules is a latti
system the sites of which correspond to the molecular s
units of the chain@10#. The mere excitonic transfer alon
these molecular sites is usually described by a tight-bind
system giving rise to a linear discrete Schro¨dinger equation
for the exciton amplitude. Taking the coupling between
vibrational degrees of freedom of the molecular sites and
exciton motion into account nonlinearity come into play
the coupled exciton vibron equations. In the case of Da
dov’s model of biomolecular energy transfer@4# the lattice
system of coupled exciton and vibron equations was redu
to a single integrable continuum nonlinear Schro¨dinger equa-
tion expressed solely in the excitonic amplitude. The cor
sponding soliton solutions describe the solitonic exci
movement. In the frame of Davydov’s model passing fro
the discrete system of coupled exciton vibron equations
single integrable continuum equation was crucial for obta
ing exact soliton solutions. On the other hand there are o
a few examples of integrable lattice system known, such
the Toda lattice@11# and the Ablowitz-Ladik lattice@12# both
possessing soliton solutions. Nonetheless, also noninteg
discrete systems can provide localized solutions in the fo
of intrinsically localized modes, also called breathers@13–
18#. However, unlike the mobile solitons, most of the intri
sically localized modes are pinned by the discrete struc
of the lattice preventing them from transferring excitati
energy across the lattice@19–22#.

In this paper we address the issue of exciton tran
along a molecular lattice chain where the exciton dynam
is influenced by anharmonic longitudinal lattice vibration
We demonstrate that for the discrete system of the cou
exciton vibron dynamics solitonlike solutions exist yieldin
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coherent exciton transfer. In particular, different from t
Davydov soliton model, our approach does not necessi
the elimination of the vibrational degrees of freedom fro
the coupled exciton vibron system. Moreover, incorporat
of the nonlinear evolution of the vibrations proves to be
sential in achieving solitonic exciton dynamics.

In Sec. II we introduce the model of the coupled molec
lar exciton vibron system and in Sec. III its dynamics wi
emphasis on soliton solutions is studied. Section IV de
with the energy exchange between the exciton and vib
systems. The energy exchange rate is computed from w
we infer on different regimes of interaction between the t
subsystems. Finally in Sec. V a brief summary is given.

II. THE COUPLED EXCITON VIBRON SYSTEM

We consider the transfer of an exciton along a on
dimensional molecular chain where the excitonic movem
is influenced by longitudinal vibrations of the molecular co
stituents of the chain. The Hamiltonian is determined by

H5Hexc1Hvib , ~1!

with the excitonic part given by a tight-binding lattice syste

Hexc52 (
n52`

`

Vnn21~cn* cn211cncn21* !, ~2!

wherecn represents the probability amplitude of the excit
to occupy the siten andVnn21 is the transfer matrix elemen
of the coupling between two molecular lattice sites. T
transfer matrix element depends on the intersite relative
ordinateqn2qn21 in an exponential fashion

Vnn215V0exp@2g~qn2qn21!#, ~3!

with qn being the elongation of thenth molecular unit andg
is the range parameter@23#. The nonlinear dynamics of the
longitudinal vibrations of the molecular sites is describ
through a Toda lattice system with Hamiltonian

Hvib5
1

2 (
n

pn
21

a

b (
n

$exp@2b~qn2qn21!#21%, ~4!
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anda,b.0. We underline that our anharmonic treatment
the lattice vibrations goes beyond the usual harmonic
proximation of the Holstein or Davydov-type Hamiltonian
@4,10#. In Ref. @24# a Davydov-type Hamiltonian was con
sidered where the intermolecular vibrations were also trea
as a Toda lattice. However, the coupling to the exciton w
chosen to be linear in the vibrational coordinates wherea
the current paper it is taken to be nonlinear. It is through
~3! that the coupling between the excitonic and intersite
brational degrees of freedom is introduced. Since the la
are not constant, the transfer matrix elements are modul
by the motion of the molecular sites relative to each oth
When two adjacent units are further apart, the correspond
matrix element diminishes, causing a reduction in the ex
tonic transfer from one site to the other. Correspondingly,
two neighboring sites being closer to each other the tran
matrix element increases resulting in enhanced excito
transfer.

The system of coupled exciton vibron equations reads

i ċn52V0$exp@2g~qn112qn!#cn11

2exp@2g~qn2qn21!#cn21% ~5!

q̈n5a$exp@2b~qn112qn!#2exp@2b~qn2qn21!#%

2gV0$~cn11* cn1cn11cn* !exp@2g~qn112qn!#

2~cn* cn211cncn21* !exp@2g~qn2qn21!#%. ~6!

For g50 the excitonic and vibrational degrees of freedo
decouple. The solutions of the two separate subsystems
hibit markedly different behavior. The linear tight-bindin
system

i ċn52V0~cn111cn21!, ~7!

does not support any localized solution at all. In fact, wh
we take as an example an initially strongly localized ex
tonic state of a single-site excitationcn(t50)5dn,m it de-
cays in the course of time according toucn(t)u2

5uJn2m(2V0t)u2 (Jn is the Bessel function of the firs
kind!. Eventually, the excitonic energy becomes spre
along the lattice sites. In contrast, the Toda system supp
moving localized vibronic states in form of solitons

exp@2b~qn2qn21!#511sinhk sech2~kn2bTt !, ~8!

with the soliton parametersbT5Aabsinhk @11#. When the
two systems become coupled (g.0) an interesting question
arises, namely, whether the Toda solitons are preserved
if so, can they additionally ‘‘infect’’ the exciton evolution to
behave in a solitonic fashion as well?

III. SOLITONIC EXCITONIC MOTION MEDIATED BY
VIBRONIC TODA SOLITONS

In this section we study the dynamics of the coupled
citon vibron system of Eqs.~5! and ~6! focusing interest on
possible solitonlike excitonic propagation induced by soli
nic Toda vibrations. To reduce the number of parameter
our model we assume thatg5b and furthermore setV051.
The system of coupled equations then reads
f
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i ċn52exp@2b~qn112qn!#cn11

2exp@2b~qn2qn21!#cn21 ~9!

q̈n5aF12
b

a
~cn11* cn1cn11cn* !Gexp@2b~qn112qn!#

2aF12
b

a
~cn* cn211cncn21* !Gexp@2b~qn2qn21!#.

~10!

Considering the caseb/a!1 we note that the excitonic term
in Eq. ~10! have negligible impact on the dynamics of th
vibrational system. Therefore, up to terms of the ord
O(b/a), the vibrational dynamics is governed by the To
lattice solutions. Upon inserting the soliton solution of t
latter into Eq.~9! one obtains

i ċn52@11sinhk sech2~k~n11!2bTt !#cn11

2@11sinhk sech2~kn2bTt !#cn21 . ~11!

The structure of this nonlinear Schro¨dinger equation points
to its relationship with the integrable Ablowitz-Ladik~AL !
equation given by

i ċn52@11ucnu2#~cn111cn21!, ~12!

which exhibits exact soliton solutions

cn
s~ t !5sinh~bAL !sech@bAL~n2ut!#exp@2 i ~vt2an1s!#

~13!

and

v522 cosa coshbAL , u52bAL
21sina sinhbAL ,

~14!

wherebALP@0,̀ ) andaP@2p,p# @12#.
In order to establish full contact between Eqs.~11! and

~12! we suppose thatcn obeys the soliton solution~13! and
adopt the soliton parameters such thatucn

su2

5sinhbALsech2@bAL(n2ut)# matches the driving term
sinhk sech2@kn2bT# in Eq. ~11! which requires thatbAL

5k as well as 2 sina5Aab holds. Then we can indeed ex
press Eq.~11! as a modified AL equation

i ċn
s2~11ucn

su2!~cn11
s 1cn21

s !5~ ucn
su22ucn11

s u2!cn11
s .

~15!

The derivation of the AL-type equation~15! in terms of the
AL soliton solution is justified if the term on the right-han
side~RHS! acts only as a small perturbation of the the gen
ine AL equation represented by the left-hand side~LHS! of
Eq. ~15!. The strength of the perturbation is measured by
ratio

u~ ucn
su22ucn11

s u2!cn11
s u

~11ucn
su2!ucn11

s 1cn21
s u

<tanh2bAL , ~16!

which in fact is small as long asbAL is not very large.~In the
forthcoming studies we takebAL5k<0.5.!
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In order to give analytical evidence that Eq.~15! supports
slightly modified AL soliton solutions we invoke perturba
tion theory based on the inverse scattering transform@25,26#.
~Perturbed AL equations were also considered in Ref.@27#.!
Within the frame of this approach it is assumed that
parameters of the exact AL soliton vary slowly in time a
the equations describing their evolution affected by the p
turbation are given by
ȧ52sinhbAL (
n52`

`
sinh@bAL~n2x0!#

cosh$bAL@~n11!2x0#% cosh$bAL@~n21!2x0#%

3Re$ f ~cn
s!exp@2 ia~n2x0!2 is#%, ~17!

ẋ05
2 sinhbAL

bAL
sina1

sinhbAL

bAL
(

n52`

`
~n2x0!cosh@bAL~n2x0!#

cosh$bAL@~n11!2x0#%cosh$bAL@~n21!2x0#%

3Im $ f ~cn
s!exp@2 ia~n2x0!2 is#%, ~18!

ḃAL5sinhbAL (
n52`

`
cosh@bAL~n2x0!#

cosh$bAL@~n11!2x0#%cosh$bAL@~n21!2x0#%

3Im $ f ~cn
s!exp@2 ia~n2x0!2 is#%, ~19!

with the perturbational term

f ~cn
s!5~ ucn

su22ucn11
s u2!cn11

s . ~20!

Evaluation of the sums with the help of the Poisson formula yields

ȧ52@Fa
c ~bAL !cos~2px0!1Fa

s sin~2px0!#cosa, ~21!

ẋ05
2 sinhbAL

b
sina1@Fx0

c ~bAL !cos~2px0!1Fx0

s sin~2px0!#sina, ~22!

ḃAL5@FbAL

c ~bAL !cos~2px0!1FbAL

s ~bAL !sin~2px0!#sina, ~23!

with coefficients

Fa
c ~bAL !5

p

bAL
(
s51

`

sinh21S p2s

bAL
D H ps

bAL
@sechbAL sinh~2bAL !1sinhbAL#

2
1

48
sech3bALF3ps

bAL
S 21

ps

bAL
D sinh~2bAL !1

6ps

bAL
sinh~4bAL !2

ps

bAL
S 21

ps

bAL
D sinh~6bAL !G J , ~24!

Fa
s ~bAL !5

p

bAL
(
s51

`

sinh21S p2s

bAL
D H @112 cosh~2bAL !#sechbAL22 coshbAL2

1

8
sech3bALF11S ps

bAL
D 2

@11cosh~4bAL !#G J ,

~25!

Fx0

c ~bAL !52 sinh5bAL(
s51

`

sinh21S p2s

bAL
D F 1

48H F3218S ps

bAL
D 2G p

bAL
sinh~2bAL !1

6p

bAL
sinh~4bAL !

1F118S ps

bAL
D 2G p

bAL
sinh~6bAL !J sech4~2bAL !2

p

bAL
sech2bALsinh~2bAL !2sinh21S p2s

bAL
D p2

bAL
coshS p2s

bAL
D

3S 1

192H F324S ps

bAL
D 2G ps

bAL
sinh~2bAL !1

24p

bAL
sinh~4bAL !

1F11S ps

bAL
D 2G ps

bAL
sinh~6bAL !J sech4bAL2

ps

bAL
sech2b sinh~2b! D G , ~26!
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Fx0

s ~bAL !522 sinh5bAL(
s51

`

sinh21S p2s

bAL
D H ps

8bAL
sech4bAL@11cosh~4bAL !#1sinh21S p2s

2bAL
D p2

bAL
coshS p2s

bAL
D F42@1

1cosh~2bAL !#sech2bAL2sinh2bAL cosech2~2b!2
1

4 F11S ps

bAL
D 2

@11cosh~4bAL !#G
14 sinh4bAL@11cosh~4bAL !#G J , ~27!

FbAL

c ~bAL !5
p

bAL
sinhbAL(

s51

`

sinh21S p2s

bAL
D H 1

16F126S ps

bAL
D 2G p

bAL
sinh~2bAL !1

24p

bAL
sinh~4bAL !

1F118S ps

bAL
D 2G 4p

bAL
sinh~6bAL !sech4~2bAL !2

p

bAL
sech2bAL sinh~2bAL !J , ~28!

FbAL

s ~bAL !5
p

2bAL
sinhbAL(

s51

`

sinh21S p2s

bAL
D H 42@11cosh~2bAL !#sech2bAL2sinh2bAL cosech2~2b!

2
1

4 F11S ps

bAL
D 2

@11cosh~4bAL !#G14 sinh4bAL@11cosh~4bAL !#J . ~29!
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The nonlinear dynamics of the system~17!–~19! is conve-
niently analyzed on thex0-a phase plane for fixedbAL .
Taking into account the influence ofbAL leads merely to a
breathing of the phase plane trajectories. A plot of th
trajectories reveals straight horizontal lines~not shown here!
so that the dynamics is characterized by moving solito
Hence the perturbational term~20! imposes no restrictions to
the free movement of the soliton centerx0.

For an illustration of the solitonic exciton movement i
duced by a vibronic Toda soliton we numerically integrat
the system~5! and~6! for a lattice consisting of 500 sites. A
the central siten5250 a vibronic Toda soliton is launche
and the excitonic subsystem is excited with the initial con
tion cn(0)5sinhbALsech@bAL(n2250)#exp(ian) corre-
sponding to the AL soliton.

Before discussing the nonlinear coupled exciton vibr
dynamics we consider briefly the linear evolution of the d
coupled excitonic lattice, that is wheng50 in Eq. ~5!. The
solution of the linear lattice is then given by

cn~ t !5sinhk(
m

i n2m

3exp~ iam!sech@km2bTt !]Jn2m~2V0t !,

~30!

from which we deduce an asymptotic decay accord
ucn(t)u2;exp(22bTt)/t, a behavior which is seen in Fig. 1
For a better illustration only the evolution of the lattice sit
160<n<320 are shown. Evidentially, exciton localization
excluded. However, for the coupled nonlinear exciton vibr
system (g.0) localized exciton solutions may be found. W
depict in Figs. 2~a! and 2~b! the excitonic occupation ampli
tude ucn(t)u2 and the vibronic soliton state exp@2b(qn
2qn21)21#, respectively. Apparently, similar to the vibra
tional amplitudes the exciton remains localized and is coh
ently transferred along the lattice in a solitonlike fashion to
e

s.

-

n
-

g

n

r-
.

Finally we remark that we found very good agreement
tween the exciton solutions obtained from the dynamics
the coupled system~5! and ~6! and those gained from th
reduced nonlinear Schro¨dinger equation~15!.

IV. ENERGY EXCHANGE BETWEEN THE EXCITONIC
AND VIBRONIC SYSTEMS

In this section we investigate the energy exchange
tween the excitonic and vibrational subsystems. The findi
of the last section indicate that for proper initial configur
tions the two subsystems evolve in a solitonic manner ma
taining their initially allocated energy localization. Th
change of energy of the vibron subsystem is determined

dHvib

dt
5$Hvib ,H%, ~31!

giving with Eqs.~2!, ~3!, and~4!

FIG. 1. The linear evolution of the decoupled excitonic su
system ~7!. The initially localized excitonic statecn(t)
5sinhbALsech@bALn#exp(ian) corresponding to the AL soliton de
pletes all over the lattice in the course of time. Parameters:bAL

50.5 anda50.2.
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dHvib

dt
52bV0 (

n52`

`

~pn2pn21!exp@2b~qn2qn21!#

3~cn* cn211cncn21* !. ~32!

An equivalent expression is derived for the change of
energy of the excitonic subsystem. Actually, the change
energy of the excitonic system follows directly from the o
of the vibronic system due to energy conservation.

Using the soliton solutions for the excitonic and vibron
system, respectively, the energy exchange rate per time
T is given by

DE5U1TET
dt$Hvib ,H%U

52bALV0sinhbALtanh2kUcosa
1

TET
dt

3(
n

tanh@kn2bTt#

12tanh2k tanh2@kn2bTt#

3~122 tanh2@kn2bTt# !~11sech2k sech2@kn

2bTt# !sech@bAL~n2ut!2y0#

3sech$bAL@~n21!2ut#2y0%U . ~33!

The variabley0 determines the relative distance between
vibronic and the excitonic soliton centers.

FIG. 2. The nonlinear evolution of the coupled exciton vibr
system~5! and~6!. The parameters for the vibronic Toda soliton a
k50.5, a51, andb50.05. Concerning the excitonic system th
parameters are the same as in Fig. 1.
e
n

nit

e

In computing the sums in Eq.~33! we note that the argu
ments of then-dependent terms are of the form (kn2bTt)
and @bAL(n2ut)2y0#. Consequently, the sums in Eq.~33!
are invariant undert translations, and thus actuallyt indepen-
dent. We get then

DE52bALV0 sinhbALtanh2k

3Ucosa(
n

tanh~kn!

12tanh2k tanh2~kn!

3~122 tanh2@kn# !@11sech2k sech2~kn!#

3sech@bALn2y0#sech@bAL~n21!2y0#U . ~34!

In Fig. 3 we show the energy exchange rate given by exp
sion ~34! as a function of the relative soliton positiony0 for
variousk. From these graphs we conclude that the smallek
the more is the energy exchange suppressed. For each g
there exists a valuey0.0 for which the energy exchang
rate vanishes. With increasedk the position of the minimum
gets even closer toy050. It is this particular regime of no
energy exchange between the exciton and vibron sys
which enabled us to derive the reduced nonlinear Sch¨-
dinger equation~15! in the preceding section. Furthermor
the graphs exhibit two extrema of maximal energy excha

FIG. 4. Amplitudes of the excitonic system when the relati
position of the Toda and AL soliton, respectively, is taken to
y052.

FIG. 3. The energy exchange rateDE in dependence on the
soliton distancey0. We plot the expression forDE given in Eq.~34!
divided by 2bALV0 sinhbAL tanh2 cosa. Curve parameter isk as
indicated.
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rate fory0;61 and beyond them the monotone curves
cay with growinguy0u. Enhancingk has the effect that the
curves decay more rapidly with growing distanceuy0u. The
latter fact becomes plausible by noting that the largerk the
smaller is the width of a soliton~determined by 1/k) and
hence, their mutual influence diminishes with larger d
tancesuy0u. Finally, for soliton distancesuy0u>5 there takes
no energy exchange place between the excitonic and
bronic subsystems. In Fig. 4 we illustrate the energy tran
from the excitonic into the vibronic system by plotting th
evolution of the excitonic occupation amplitudesucn(t)u2 for
a relative soliton distancey052. According to the consider
ations above~compare Fig. 3! for such a distance the couple
system is in the regime of moderate energy transfer. As
Fig. 4 reveals the excitonic amplitudes diminishes during
initial transient phase of energy transfer from the excito
into the vibronic system. Nevertheless, at the end of
transfer transient the reduced exciton amplitudes get st
lized and evolve in the following as a soliton.

V. SUMMARY

In the present paper we investigated the transfer dynam
of the coupled exciton vibron system of a one-dimensio
et

d

.
c.

dt
-

-

i-
er

e
n
c
is
i-

cs
l

molecular chain model. In the realm of a Holstein-ty
Hamiltonian the longitudinal intersite vibrations of the lattic
were described by the nonlinear dynamics of a Toda latt
The exciton motion across the molecular units was prese
by a tight-binding system which, if decoupled from any m
lecular vibrational degrees of freedom, would evolve linea
making exciton localization impossible. However, as a str
ing feature of the coupled exciton vibron dynamics we de
onstrated that not only the vibrational Toda solitons are p
served but also render their localizationand mobility
properties to the excitonic system. We stress the mutual
pearance of exciton localization and mobility for mere ex
ton localization happens already in the Holstein system in
form of immobile localized modes pinned by the lattice. T
mobility of the localized exciton in the present situation a
lows for stable and loss-free excitonic energy transfer alo
the molecular chain.
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